Yeast Surface Display of Two Proteins Previously Shown to Be Protective Against White Spot Syndrome Virus (WSSV) in Shrimp

نویسندگان

  • Vorawit Ananphongmanee
  • Jiraporn Srisala
  • Kallaya Sritunyalucksana
  • Chuenchit Boonchird
  • Irene Söderhäll
چکیده

Cell surface display using the yeasts Saccharomyces cerevisiae and Pichia pastoris has been extensively developed for application in bioindustrial processes. Due to the rigid structure of their cell walls, a number of proteins have been successfully displayed on their cell surfaces. It was previously reported that the viral binding protein Rab7 from the giant tiger shrimp Penaeus monodon (PmRab7) and its binding partner envelope protein VP28 of white spot syndrome virus (WSSV) could independently protect shrimp against WSSV infection. Thus, we aimed to display these two proteins independently on the cell surfaces of 2 yeast clones with the ultimate goal of using a mixture of the two clones as an orally deliverable, antiviral agent to protect shrimp against WSSV infection. PmRab7 and VP28 were modified by N-terminal tagging to the C-terminal half of S. cerevisiae α-agglutinin. DNA fragments, harboring fused-gene expression cassettes under control of an alcohol oxidase I (AOX1) promoter were constructed and used to transform the yeast cells. Immunofluorescence microscopy with antibodies specific to both proteins demonstrated that mutated PmRab7 (mPmRab7) and partial VP28 (pVP28) were localized on the cell surfaces of the respective clones, and fluorescence intensity for each was significantly higher than that of control cells by flow cytometry. Enzyme-linked immunosorbant assay (ELISA) using cells displaying mPmRab7 or pVP28 revealed that the binding of specific antibodies for each was dose-dependent, and could be saturated. In addition, the binding of mPmRab7-expressing cells with free VP28, and vice versa was dose dependent. Binding between the two surface-expressed proteins was confirmed by an assay showing agglutination between cells expressing complementary mPmRab7 and pVP28. In summary, our genetically engineered P. pastoris can display biologically active mPmRab7 and pVP28 and is now ready for evaluation of efficacy in protecting shrimp against WSSV by oral administration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunomodulatory effects of seagrass Halophila ovalis polysaccharide mixed feed in adult black tiger shrimp Penaeus monodon and its protective efficacy against white spot syndrome virus infection

As white spot syndrome virus (WSSV) can be highly pathogenic in penaeid shrimp, various feed supplements have been tested to help to protect farmed shrimp against WSSV disease. Here a polysaccharide extract from Halophila ovalis (HO) seagrass was added to feeds at concentrations of 0.25, 0.5, and 1.0 g[a1] /kg to assess its ability to protect Black Tiger shrimp (Penaeus monodon) against WSSV ch...

متن کامل

Immunization of Litopenaeus vannamei shrimp against white spot syndrome virus (WSSV) by gamma-irradiated WSSV plus Vibrio paraheomolyticus

Introduction: White spot syndrome virus (WSSV) is one of the most deadly infectious pathogens of the shrimp culture industry. Neither effective vaccines nor efficient treatments are currently available for this disease. Vibrio species are well known dominant bacterial pathogens in the shrimp ponds. As facultative pathogenic bacteria, it is possible that Vibrio spp. along with WSSV to co-infect ...

متن کامل

Immunomodulatory effects of seagrass Halophila ovalis polysaccharide mixed feed in adult black tiger shrimp Penaeus monodon and its protective efficacy against white spot syndrome virus infection

As white spot syndrome virus (WSSV) can be highly pathogenic in penaeid shrimp, various feed supplements have been tested to help to protect farmed shrimp against WSSV disease. Here a polysaccharide extract from Halophila ovalis (HO) seagrass was added to feeds at concentrations of 0.25, 0.5, and 1.0 g[a1] /kg to assess its ability to protect Black Tiger shrimp (Penaeus monodon) against WSSV ch...

متن کامل

Sequence analysis of ORF94 in different White Spot Syndrome Virus (WSSV) isolates of Iran

White spot syndrome virus (WSSV) is a pathogen that causes high mortality in shrimp culture in the whole world. Sequence analysis of WSSV has shown similarity of WSSV isolates in different countries with exception of a few variable genomic loci. This study investigated the sequence variation of some Iranian WSSV isolates and previously identified isolates. Samples were collected during target ...

متن کامل

Sequence analysis of ORF94 in different White Spot Syndrome Virus (WSSV) isolates of Iran

White spot syndrome virus (WSSV) is a pathogen that causes high mortality in shrimp culture in the whole world. Sequence analysis of WSSV has shown similarity of WSSV isolates in different countries with exception of a few variable genomic loci. This study investigated the sequence variation of some Iranian WSSV isolates and previously identified isolates. Samples were collected during target ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015